Journal of Organometallic Chemistry, 205 (1981) 343-351 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

LONG-CHAIN BI- AND TRI-DENTATE PHOSPHINES AS LIGANDS IN CARBONYLVANADIUM COMPLEXES

GÜNTHER MÜHLBACH, BARBARA RAUSCH and DIETER REHDER *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D 2 Hamburg 13 (F.R.G.)

(Received August 7th, 1980)

Summary

The potentially tridentate ligands $PCy(CH_2CH_2PPh_2)_2 (pcy(pph_2)_2)$ and $PPh-(CH_2CH_2PCy_2)_2 (pph(pcy_2)_2)$, p_3 , react with $[Et_4N][V(CO)_6]$ and $CpV(CO)_4$ under UV irradiation to form the mononuclear chelate five-ring complexes *cis*- $[Et_4N][V(CO)_4p_3]$ and *cis*- $[CpV(CO)_2pcy(pph_2)_2]$, and the dinuclear CpV- $(CO)_2\mu$ - $p_3(CO)_3VCp$ (where the basic structure of the $\{cis$ - $CpV(CO)_2PP\}$ unit is a five-membered ring). Reaction between the carbonyl complexes and the bidentate ligands $Ph_2P(CH_2)_nPPh_2 (p_2(n); n = 5, 6)$ affords $\{CpV(CO)_3\}_2-\mu-p_2(n)$ and $CpV(CO)_3-\mu-p_2(n)CpV(CO)_2p_2(n)$. There is also spectroscopic evidence for the formation of $[Et_4N][V(CO)_5p_3]$, $mer-[Et_4N][V(CO)_3p_3]$, $[Et_4N]_2[V(CO)_4-\mu-p_3V(CO)_5]$ and a species $\{CpV(CO)_2\}_n \{\mu-pph(pcy_2)_2\}_2 (n = 2 \text{ or } 3)$. Structural assignments are based on IR, ³¹P and ⁵¹V NMR data. The coordination behaviour of p_3 and $p_2(n)$ is compared with that of other bi- and tridentate phosphine ligands.

Introduction

In earlier reports on the coordinative properties of oligodentate phosphine and arsine ligands in carbonylvanadium compounds we considered the influence of electronic and steric factors on the product spectrum arising from the photoinduced replacement of CO for the weaker Group Va ligands.

Thus, while diphosphines $Ph_2P(CH_2)_nPPh_2$ (n = 1-4) form mononuclear, cisoid chelate structures [1], Ph_2P-PPh_2 , trans- $Ph_2PCH=CHPPh_2$, $Ph_2AsCH_2-CH_2PPh_2$ and $Ph_2AsCH_2CH_2AsPh_2$ act as chelating and/or bridging ligands in monoand di-nuclear complexes [2]. The tetradentate $[Ph_2PCH_2CH_2PPhCH_2]_2(p_4)$ affords $[{V(CO)_4}_{2n}(\mu-p_4)_n]^{2n-}$ and ${HV(CO)_4}_2-\mu-p_4$ [1,3], whereagainst the tetradentate $P(CH_2CH_2PPh_2)_3$ (pp_3) and the tridentate $CH_3C(CH_2PPh_2)_3$ (cp_3) and PPh- $(CH_2CH_2PPh_2)_2$ (p3'), pm, form chelate complexes $[V(CO)_np_m]^-$ (n = 4, 3) and $CpV(CO)_n p_m$ (n = 2 and $(p_3' \text{ only}) 1 *$) [4,5]. With cp_3 , a complex $CpV(CO)_3 - \mu - cp_3(CO)_2 VCp$ is obtained by reaction between $CpV(CO)_4$ and cp_3 in a sealed tube [7].

In the light of these investigations, we have now studied the ligands Ph_2P -(CH₂)_nPPh₂ (n = 5: $p_2(5)$, n = 6: $p_2(6)$) and RP(CH₂CH₂PR'₂)₂ (p_3 ; R = Cy, R' =Ph: $pcy(pph_2)_2$; R = Ph, R' = Cy: $pph(pcy_2)_2$) which, due to the spacing of the PPh₂ functions ($p_2(5)$, $p_2(6)$) or unfavourable steric interactions (cyclohexyl substituents on phosphorus) may be expected either to span *trans*-positions or to act as bridging ligands. No *trans*-disubstituted complexes have, however, been observed: $p_2(5)$ and $p_2(6)$ react to form dinuclear, ligand-bridged species, while the tridentate phosphines p_3 are more variable in their coordination behaviour, yielding chelates and bridged complexes.

Experimental

All reactions were carried out with UV irradiation under nitrogen and in oxygen-free, dried solvents. The general procedures and the irradiation apparatus employed were described previously [5]. $[Na(diglyme)_2][V(CO)_6]$ was purchased (Strem) and converted to $[Et_4N][V(CO)_6]$ as described in ref. 1. CpV- $(CO)_4$ and the ligands $p_2(5)$ and $p_2(6)$ were obtained from commercial sources (Strem).

pcy(pph₂)₂ and pph(pcy₂)₂ were prepared as described for PhP(CH₂CH₂PPh₂)₂ [8] from PPh₂CH=CH₂ and PH₂Cy, or PPh(CH=CH₂)₂ and PHCy₂, respectively, using azobis(isobutyro)nitrile as a catalyst. The ligands were purified by passage of a methanol solution through a column filled with alumina (3×15 cm for ca. 5 g of the ligand), to yield, after removal of the solvent and treatment with n-heptane, white powders of the following ³¹P NMR characteristics (THF solution):

	T (K)	δ (terminal P)	δ (central P)	³ <i>J</i> (PP) (Hz)
pcy(pph ₂) ₂	295		-10.0 (t)	
	210	-14.5 (d)	-12.0 (t)	21
$pph(pcy_2)_2$	295	-0.3 (d)	-16.5 (t)	23

Spectra

IR: ca 0.02 *M* THF solutions in 0.1 mm KBr cells; Perkin—Elmer spectrometer 337; absolute error $\pm 1 \text{ cm}^{-1}$. ³¹P{¹H} NMR: ca. 0.1 *M* THF solution in rotating 7.5 mm diameter vials; 36.44 MHz, Bruker WH 90 PFT spectrometer; absolute error ± 0.1 (narrow signals) to ± 2 ppm (broad signals). ⁵¹V NMR; ca. 0.1 *M* THF solution in rotating 7.5 mm diameter vials fitted into 10 mm tubes containing CDCl₃ as external lock; standard (external) VOCl₃ neat; absolute error ± 3 ppm at constant temperature (300 K).

^{*} The complex CpV(CO)p₃' was formerly assigned the formula *trans*-[CpV(CO)₂p₃'] on the basis of IR and NMR spectroscopic arguments [4]. An X-ray structure shows, however, that p₃' is coordinated with all three P atoms [6].

Preparation of complexes

Analytical data and some of the properties and experimental details are listed in Tables 1a and 1b.

 $\{\eta^{5}-C_{5}H_{5}V(CO)_{3}\}_{2}-\mu-Ph_{2}P(CH_{2})_{5}PPh_{2}(I), \{\eta^{5}-C_{5}H_{5}V(CO)_{3}\}_{2}-\mu-Ph_{2}P(CH_{2})_{6}PPh_{2}(II), \eta^{5}-C_{5}H_{5}V(CO)_{3}-\mu-Ph_{2}P(CH_{2})_{5}PPh_{2}\{\eta^{5}-C_{5}H_{5}V(CO)_{2}\}Ph_{2}P(CH_{2})_{5}PPh_{2}(III), and \eta^{5}-C_{5}H_{5}V(CO)_{3}-\mu-Ph_{2}P(CH_{2})_{6}PPh_{2}\{\eta^{5}-C_{5}H_{5}V(CO)_{2}\}Ph_{2}P(CH_{2})_{6}PPh_{2}(IV).$

A solution of 648 mg CpV(CO)₄ (2.84 mmol) and 625 mg of the ligand (1.4 mmol) in ca. 100 ml THF was irradiated for 2 h, during which time the colour changed from yellow-orange to a dark reddish brown. The solution was concentrated to 10 ml (room temperature, 1 Torr), and 50 ml n-heptane were added with vigorous stirring, affording a brown, powdery precipitate. Standing at 250 K over-night yielded additional product, which was filtered off, washed with 10 ml of heptane and dried under high vacuum (4 h). Complexes I and II (irradia-

TABLE 1a

EXPERIMENTAL DETAILS FOR ISOLATED COMPLEXES

Complex	Molar ratio ^a	I <i>rradia-</i> tion time (min)	Colour	P/V ratio	Yield (%)
{(U) < \$1,29,45,57,57,57,57,57,57,57,57,57,57,57,57,57	272	220	dark ochre	2.05/2	 73
$\{CpV(CO)_3\}_{2} - \mu - p_2(6)$ (II)	1/2	30	ochre	1.08/1	95
II + CpV(CO) ₃ $\{\mu$ -p ₂ (6) CpV(CO) ₂ p ₂ (6) (IV)	1/1	20	red-brown	1.45/1	38
$cis \{CpV(CO)_2 pcy(pph_2)_2\} \langle V \rangle$	2/2	120	rusty brown	3.03/1	54
Cpv(CO)2 [u-pcy(ppn2)2 [Cpv(CO)2 (VI)	1/2	75	CURLY .	1.43,0	95
$CpV(CO)_2 \left[\mu - pph(pcy_2)_2 \right] CpV(CO)_3 (VII)$	1/2	30	brown	1.62/1	23
$cis-[Et_4N][V(CO)_4pcy(pph_2)_2](IX)$	1/1	240	dark red	2.88/1	85
$cis-[Et_4N][V(CO)_4pph(pcy_2)_2](X)$	1/1	60	red-brown	2.97/1	95

^a Ligand: carbonyl complex.

TABLE 15

ANALYTICAL DATA

Complex	Emperical formula	Molecular mass	Analysi	s (found ((calcd.) (%))	
			с	н	N	Р	v
I	C45H40O6P2V2	840.64	64.3	5.2		7.2	11.5
			(64.30)	(4.80)		(7.36)	(12.12)
11	C46H42O6P2V2	854.66	64.7	5.7		6.9	10.6
			(64.65)	(4.95)		(7.25)	(11.92)
11 + IV a	$C_{60.5}H_{56}O_{5.5}P_{3}V_{2}$	1065.90	68.1	6.0		8.2	9.3
			(68.17)	(5.30)		(8.72)	(9.56)
v	$C_{41}H_{44}O_2P_3V$	712.66	68.7	6.3		13.8	7.6
			(69.10)	(6.22)		(13.04)	(7.15)
VI	C49H49O5P3V2	912.73	64.1	5.7		10.0	11.3
			(64.48)	(5.41)		(10.18)	(11.16)
VII	C49H67O5P3V2	930.68	62.9	7.0		10.8	11.0
			(63.23)	(7.26)		(9.98)	(10.95)
IX	C46H59NO4P3V	833.84	66.3	7.5	1.7	10.7	6.1
			(66.26)	(7.13)	(1.68)	(11.14)	(6.12)
x	C46H77NO4P3V	851.98	64.7	9.6	1.7	11.2	6.2
			(64.85)	(9.11)	(1.64)	(10,91)	(5.98)

^a Calculated for a 1/1 mixture of II and IV.

tion time for II is 30 min) were obtained in this way as ochre powders.

If the molar ratio of the starting products is 1/1, red-brown products are isolated after 30 min of irradiation, and according to the spectroscopic data (vide infra) and analytical results they consist of equimolar amounts of III + I, and IV + II, respectively.

$\eta^{5} - C_{5}H_{5}\sqrt[5]{(CO)_{2}PPh_{2}CH_{2}CH_{2}P}(C_{6}H_{11})CH_{2}CH_{2}PPh_{2}(V), \\ \eta^{5} - C_{5}H_{5}\sqrt[5]{(CO)_{2}PPh_{2}CH_{2}CH_{2}P}(C_{6}H_{11})CH_{2}CH_{2}PPh_{2}V(CO)_{3}-\eta^{5}-C_{5}H_{5}(VI), and \\ \eta^{5} - C_{5}H_{5}\sqrt[5]{(CO)_{2}P}(C_{6}H_{11})_{2}CH_{2}CH_{2}PPhCH_{2}CH_{2}P(C_{6}H_{11})_{2}V(CO)_{3}-\eta^{5}-C_{5}H_{5}(VII)$

516 mg CpV(CO)₄ (2.26 mmol) and 1165 mg pcy(pph₂)₂ (2.19 mmol) were dissolved in 100 ml THF and irradiated for 2 h. After concentration to ca. 10 ml, the solution was treated with 40 ml n-heptane. The slightly turbid solution was then set aside at 250 K for two days. After that time, red-brown V had precipitated. The complex was filtered off, washed with 10 ml heptane and dried under high vacuum (6 h).

For the preparation of VI and VII, 670 mg $CpV(CO)_4$ (2.9 mmol) and 880 mg of the ligand (1.4 mmol) were brought into reaction as described above. Irradiation times were 75 min $(pcy(pph_2)_2)$ and 30 min $(pph(pcy_2)_2)$.

$cis-[Et_4N][V(CO)_4PPh_2CH_2CH_2P(C_6H_{11})CH_2CH_2PPh_2]$ (IX) and $cis-[Et_4N][V(CO)_4P(C_6H_{11})_2CH_2CH_2PPhCH_2CH_2P(C_6H_{11})_2]$ (X)

A solution of 417 mg $[Et_4N][V(CO)_6]$ (1.2 mmol) and 640 mg of the ligand (1.2 mmol) in ca. 100 ml THF was irradiated for 4 h $(pcy(pph_2)_2)$ or 1 h $(pph-(pcy_2)_2)$, respectively. The initially yellow solution rapidly changed to dark-red. The CO absorption bands due to monosubstitution were absent after the irradiation times specified, and the trisubstituted complex was not formed in appriciable amounts. The solutions were concentrated at room temperature to ca. 10 ml, and 60 ml n-heptane was added with vigorous stirring to precipitate a deep red, pasty product which, after stirring for one day solidified to yield a red, powdery complex. The precipitate was then filtered off, washed twice with 10 ml portions of THF/heptane 1/3, and dried for 6 h under high vacuum. Complexes IX and X are thus obtained as orange-red to dark-red microcrystalline powders.

Results and discussion

The IR spectra of the complexes are listed in Table 2, ³¹P and ⁵¹V NMR spectra in Table 3. For comparison, published spectroscopic data of selected complexes, containing similar phosphorus functions, are listed in Table 4.

The reaction between $CpV(CO)_4$ and the ligands $p_2(5)$ and $p_2(6)$

The photo-induced reaction between $CpV(CO)_4$ and $p_2(n)$ (n = 5, 6) in a molar ratio of 2/1 yields red-brown solutions, from which the dinuclear, ligand-bridged complexes $\{CpV(CO)_3\}_2 - \mu - p_2(n)$ (n = 5 : I, n = 6 : II) can be precipitated.

With a 1/1 ratio, products with an approximate P/V ratio of 3/2 are obtained, which clearly differ in appearance and spectroscopic properties from I and II. The IR and ³¹P NMR spectra show absorptions belonging to mono- and di-substituted units. The ³¹P NMR spectrum also exhibits strong and narrow signals

TABLE 2 IR DATA (v(CO) RANGE)

Complex	ν(CO) (e	2m ⁻¹) c					
I	1950	1863	1846	(1768) ^d			
II	1950	1868	1855				
$CpV(CO)_3 - \mu - p_2(6)CpV(CO)_2 p_2(6)$ (III) ^a	1951	(1909) e	1864	1848	(1828) ^e	1765 d	
IVa	1954	1868	1853	(1845) ^e	1767 ^d		
v	1878	1807	(1760) ^f				
VI	1953	1868	1845	(1800) ^e	1792 ^d		
VII	1953	1870 d	1866	1850	1789 d	(1730) f	
$\{CpV(CO)_2\}_3 \{\mu - pph(pcy_2)_2\}_2 (VIII)^b$	1865	1790	(1755) ^f				
[V(CO)5pcy(pph2)2] ⁻	1963	1861	1815				
IX	(1915) f	1897	1793	1770	1745	(1725) f	
$[V(CO)_5 pph(pey_2)_2]^-$	1965	1865	1822				
x	(1920) f	1895	1820	1785	1770	1745	(1720) f
$[V(CO)_{4}-\mu-pph(pcy_{2})_{2}V(CO)_{5}]^{2-}(XI)^{b}$	1965	1898	1865	1825	1790	1770	(1730) f

⁴ Mixture of III + I and IV + II, respectively. ^b Tentative formulation; see text for discussion. ^c Absorptions in brackets are weak signals belonging to by-products. ^d Disubstitution. ^e Unassigned. ^f Trisubstitution.

around -18.5 ppm typical of uncoordinated PPh₂ groups. As shown by the ease of the formation of I and II, the overall reaction is probably represented by eq. 1 to 3 (see also ref. 11 for the first reaction step), where eq. 3 leads to the new products III and IV.

$$\operatorname{CpV}(\operatorname{CO})_4 + p_2(n) \to \operatorname{CpV}(\operatorname{CO})_3 p_2(n) + \operatorname{CO}$$
 (1)

$$CpV(CO)_3p_2(n) + CpV(CO)_4 \rightarrow I, II + CO$$
 (2)

I, II +
$$p_2(n) \rightarrow CpV(CO)_3 - \mu - p_2(n)CpV(CO)_2 p_2(n) + CO$$
 (3)

$$(n = 5: III, n = 6: IV)$$

Thus, dinuclear biligate complexes are formed having the IR absorption at ca. 1765 cm^{-1} characteristic of a *cis*-disubstituted, open complex such as *cis*- $[\text{CpV}(\text{CO})_2(\text{PPh}_2\text{Me})_2]$ (cf. Table 4). The reaction does not proceed to give quantitative formation of III and IV, which is probably due to competing photoinduced splitting of the vanadium—phosphorus bond. Elemental analysis of the isolated products indicate an approximate 1/1 mixture of I + III and II + IV, respectively.

The reaction between CpV(CO)₄ and the ligands $pcy(pph_2)_2$ and $pph(pcy_2)_2(p_3)$ For a 1/1 ratio of CpV(CO)₄ : $pcy(pph_2)_2$ the reaction product is cis-[CpV-(CO)₂pcy(pph₂)₂] (V). The CO frequencies are at comparatively high wave numbers (1878 and 1807 cm⁻¹) and thus indicate a chelate five-ring structure (compare cis-[CpV(CO)₂p₂(2)], cis-[CpV(CO)₂p₂(4)] and cis-[CpV(CO)₂p₃'] in Table 4). The ⁵¹V and ³¹P NMR results are also consistent with this assumption: The ³¹P NMR signal at -13.5 ppm shows that the only uncoordinated phosphorus function present is the PPh₂ group. The ³J(PP) coupling (33 Hz) is somewhat enhanced as compared to the free ligand (21 Hz). The fine structure splitting (4.5 Hz) probably reflects ⁵J(PCCPVP) coupling.

The analogous reaction between $CpV(CO)_4$ and $pph(pcy_2)_2$ yields a *cis*-disubstituted product in which, according to the ³¹P NMR spectrum all the phos-

31 P (210 K) A	ND ⁵¹ V NMR DATA ^a					
Complex	δ(³¹ P)uncoord. (ppm)	3J(PP) (II2)	δ (³¹ P) _{coord} . (ppm)	$\frac{\Delta \nu_{I/2}(^{31}P)_{coord}}{(Hz)}c$	δ(⁵ 1 V) (rpm)	$\Delta \nu_{1/2}(^{51}V)$ (IIz) c
I	d		q		-1357	420
п	(ł	94	230	d	
	18,1	1	87, 84, 74 °	70, 70, 160	-1360, -1140	460. v. br.
η V ^b		ł	86, 85, 74 C	50, 80, 160	-1360. 1	500
۷	-13.47 (dd) #	33 #	$(121)^{h}$		(-1895) h	(1050) h
			113, 99	320, 270	-1112	670
VI	(14.0)	I	79, 99, 114 i	400,400,470	-13661104	920.1050
VII	I	ł	(69), 72, 105	260, 440	-13721040	1100, v. br.
V111 b	I	ł	104	470	c,	
XI	—1 4.6(d)	43	86. (78)	1600. (800)	-1824(t) k	
	(-14.0)					
×	-2.4(d)	34	95	1400		950
XI	1.8(d)	33		v. br.	-1835, -1885(d) ^m	
	-17.5				(1953)"	830
<i>a</i> Data in brack half height; v. 4,6 Hz, ^h CPV() dicated, ^m [V()	tets correspond to weak sig br. = very broad. d Not mer CO)L, i 79: CpV(CO)3—PP CO)5 pph(pcv2)2] ⁻ , double	nals representing asured. ^e CpV(CO ^h 2, 99: CpV(CO) et. ¹ J(VP) 245 Hz	by-products in negligeab))3—PPh2. / Signal for dis 2—PCy, 114; CpV(CO)2. ¹¹ [V(CO)6] ⁻ (very narr	le amounts, ^b See footnotes, substitution not observed, ^{ff} L —PPh2, ^{ff} Singlet; not assigned row signal),	a and b in Table 2. ^c Width of t Doublet of doublets; fine struct 1. ^R Triplet; ¹ J(VP) ca, 220 H2.	the NMR signals at ture splitting ⁵ J(PP) ¹ Fine structure in-

TABLE 3

348

Complex a	ν(CO) (cm ⁻¹)	δ(³¹ Ρ) ^b (ppm)	δ(^{5 1} V) (ppm)	Δν _{1/2} (⁵¹ V) (Hz)	1 J(VP) (Hz)	Refs.
CpV(CO) ₃ PPh ₂ Me	1950 1863 1850	62	-1368		150	6
cis-[CpV(CO)2(PPh2Me)2]	1856 1763	80	-1152		20	a 0.
cis-[CpV(CO)2p2(2)]	1870 1799	112	-1110		C	1.9
cis-[CpV(CO)2p2 (4)]	1860 1774	72	-1360		C	1.9
cls-[CpV(CO)2p3']	1868 1795	102, 114	-1230	310	C	4
CpV(CO)p ₃ ^{/ d}	1798 1764	122	-970	380	υ	4.6
[V(C0)5PCy3] ⁻	1957 1849 1810		-1854	00	220	10
[V(CO)5 PPh2 Me] ⁻	1963 1859 1818		-1839	160	200	5
cis-[V(CO)4 (PPh2Me)2] ⁻	1898 1792 1772 1743		-1671	630	IJ	6
cis-[V(CO)4p2(2)] ⁻	1903 1799 1780 1742		1790		225	1.9
cis-[V(CO)4p2(4)] ⁻	1897 1795 1770 1746		-1699		U	1,9
[V(CO) ₅ p ₃ '] ⁻	1965 1857 1818		-1820		U	4
<i>cis</i> -[V(CO)4p ₃ '] ⁻	1903 1800 1770 1740		-1830	60	225	4. 5
mer-[V(CO)3p3 ¹] ⁻	1910 1805 1714	62, 87	-1720	1900	U	4, 5

IR AND NMR DATA FOR SELECTED CARBONYLPHOSPHINEVANADIUM COMPLEXES

TABLE 4

ļ

esolvea. ż 077 2 5 uniated r .7.7. ĥ 2 2 2 1 1 3 ÷ 1 1 i. . 5 . ί. d See footnote on p. 344. 349

phorus atoms are coordinated. Hence, the complex formed may be $\{CpV(CO)_2\}_2 \{\mu \text{-pph}(pcy_2)_2\}_2$ (VIIIa) or $\{CpV(CO)_2\}_3 \{\mu \text{-pph}(pcy_2)_2\}_2$ (VIIIb) or a mixture of VIIIa and VIIIb (the P/V ratio is 2.3/1) (see also the discussion of the overall reaction below). In VIIIb, the ligands act both as chelating and as bridging ligands in that two $\{CpV(CO)_2PCy_2(CH_2)_2PPh(CH_2)_2PCy_2\}$ units are connected to each other via a $\{CpV(CO)_2\}$ moiety coordinated to the two free PCy_2 groups. If the $CpV(CO)_4/p_3$ ratio is 2/1 to 3/1, the well defined complexes $CpV(CO)_2PPh_2(CH_2)_2PCy_2(CH_2)_2PPh_2CpV(CO)_3$ (VI) and $CpV(CO)_2PCy_2(CH_2)_2PPh(CH_2)_2PCy_2(CO)_3$ (VII) are obtained, and in these

the phosphine again has a chelating in addition to a bridging function. The structural assignments are based on the IR spectra (ν (CO) for {CPV(CO)₃} and {*cis*-CpV(CO)₂}-chelate 5-rings), the ⁵¹V NMR signals at -1370 ppm (monosubstitution) and -1100 ppm (disubstitution), and the ³¹P NMR spectra (no uncoordinated phosphorus; δ (³¹P) values for coordinated P: +79 ({CpV(CO)₂PCp₂}), +99 ({CpV(CO)₂PCy}), +114 ({CpV(CO)₂PPh₂}), +105 ({CpV(CO)₂PCy₂} or {CpV(CO)₂PPh})).

The overall reaction between $CpV(CO)_4$ and the tridentate phosphines p_3 can be summarized by the following scheme (eq. 4 to 7):

$$CpV(CO)_4 + p_3 \rightarrow CpV(CO)_3 p_3 \tag{4}$$

$$CpV(CO)_3p_3 \rightarrow V + CO$$
 (5)

 $V \rightarrow CpV(CO)p_3 + CO \text{ (incomplete reaction)}$ (6a)

$$V + CpV(CO)_4 \rightarrow VI, VII + CO$$
 (6b)

 $VII + p_3 + VII \rightarrow VIIIb + 2 CO$

with a possible side-chain

$$CpV(CO)_{3}p_{3} + p_{3} \rightarrow cis \cdot [CpV(CO)_{2}(p_{3})_{2}] + CO$$

$$\downarrow + CpV(CO)_{4}$$

$$VIIIa + 2 CO$$
(5)

(7)

1-1

The reaction path represented by eq. 4 to 6a, which is the only one encountered with PhP(CH₂CH₂PPh₂)₂ (p₃') ([4] and footnote on page 344), appears to be hindered with p₃ due to the greater spatial requirement of the PCy and PCy₂ groups. The trisubstituted CpV(CO)p₃ can, however, be detected as a by-product by its IR absorption at 1760 cm⁻¹ and, in the case of CpV(CO)pcy(pph₂)₂, the $\delta(^{51}V)$ (-895 ppm) and the $\delta(^{31}P)$ value (+121 ppm) (compare CpV(CO)p₃' in Table 4).

The reaction between $[Et_4N][V(CO)_6]$ and p_3

The final products of reaction isolated from photosubstitution in the hexacarbonylvanadate (-I) anion are the *cis*-disubstituted complexes $[Et_4N]$ - $[V(CO)_4p_3]$ ($p_3 = pcy(pph_2)_2 : IX, p_3 = pph(pcy_2)_2 : X$). The trisubstituted complexes *mer*- $[Et_4N][V(CO)_3p_3]$ are indicated only by a weak, but typical absorption at ca. 1920 cm⁻¹. In contrast, p_3' (and other tri- and totra-dentate phosphines) has been shown to replace three CO groups to form *mer*- $[Et_4N]$ - $[V(CO)_3p_3']$ [4,5] after sufficiently long irradiation times.

As shown by the IR spectra after about 10 min of UV irradiation, the first

reaction step is the formation of $[Et_4N][V(CO)_5p_3]$ (cf. Table 3). The reaction proceeds rapidly to yield the disubstituted species, which exhibit a doublet of narrow lines in the 31 P NMR spectrum at -14.6 (IX) and -1.3 (X) ppm, indicating uncoordinated PPh_2 (IX) and PCy_2 (X), respectively, and thus a rigid chelate 5-ring structure. This is also evidenced by the rather high 51 V shielding $(\delta(^{51}V)$ ca. -1830 ppm; compare the analogous p_3' complexes in Table 4). The ⁵¹V resonance of IX is resolved into a triplet $({}^{1}J({}^{51}V-{}^{31}P) 220 \text{ Hz})$. The ${}^{31}P$ absorptions of the coordinated phosphorus atoms are extremely broad, which is characteristic of depressed decoupling of the ³¹P and ⁵¹V nucleus and represents the unresolved eight-line pattern to be expected for the coupling of a spin 1/2 (^{31}P) to a spin 7/2 (^{51}V) nucleus. A similar effect has been observed for the ¹H-⁵¹V coupling in $[CpV(H)(CO)_3]^-$ [3] and η^7 -C₇H₇V(CO)₃ [12], and for the ¹⁹F-⁵¹V coupling in [VOF₄]⁻ [13]. The ³¹P-⁵¹V coupling constant obtained indirectly from the overall width of the 31 P signals (ca. 1600/8) is in accord with those determined directly from the ⁵¹V NMR spectra of comparable pentacarbonylphosphinevanadates (-I) [10].

An additional product is formed from $[V(CO)_6]^-$ and $pph(pcy_2)_2$ if the ratio of the reactants is 2/1. The red-brown powder isolated from this reaction (P/V 1.8/1) clearly differs from X in its IR (Table 2) and ⁵¹V NMR (Table 3) spectra, which indicate that the complex contains $\{V(CO)_5^-\}$ ($\nu(CO)$ 1965 and 1865 cm⁻¹; $\delta({}^{51}V)$ –1885 ppm, doublet: ${}^{1}J(VP)$ 245 Hz; compare $[V(CO)_5PCy_3]^$ in Table 4) and $\{cis-V(CO)_4^-\}(\delta({}^{51}V)$ –1835 ppm) units. The compound must therefore contain $[V(CO)_4-\mu-p_3V(CO)_5]^{2-}$ (XI) moieties, linked to moieties in which the ligand is partly uncoordinated (cf. the ${}^{31}P$ NMR data in Table 3).

References

- 1 D. Rehder, L. Dahlenburg and I. Müller, J. Organometal. Chem., 122 (1976) 53.
- 2 W. Roose, D. Rehder, H. Lüders and K.H. Theopold, J. Organometal. Chem., 157 (1978) 311; H.-Ch. Bechthold and D. Rehder, ibid., 172 (1979) 331; H. Baumgarten, H. Johannsen and D. Rehder, Chem. Ber., 112 (1979) 2650.
- 3 U. Puttfarcken and D. Rehder, J. Organometal. Chem., 185 (1980) 219.
- 4 I. Müller and D. Rehder, J. Organometal. Chem., 139 (1977) 293.
- 5 D. Rehder and U. Puttfarcken, J. Organometal. Chem., 184 (1980) 343.
- 6 K. von Deuten and D. Rehder, unpublished.
- 7 H. Behrens and H. Brandl, Z. Naturforsch. B, 22 (1967) 1353.
- 8 D.L. DuBois, W.H. Myers and D.W. Meek, J. Chem. Soc. Dalton Trans., (1975) 1011; E. Arpac and L. Dahlenburg, Angew. Chem., in press.
- 9 D. Rehder, J. Magn. Reson., 38 (1980) 419.
- 10 D. Rehder, W.L. Dorn and J. Schmidt, Transition Met. Chem., 1 (1976) 233.
- 11 D.G. Alway and K.W. Barnett, Inorg. Chem., 19 (1980) 799.
- 12 G.M. Whitesides and H.L. Mitchell, J. Amer. Chem. Soc., 91 (1969) 2245.
- 13 J.A.S. Howell and K.C. Moss, J. Chem. Soc. A, (1971) 270.